-
Minimum Cuts in Near-Linear Time
Introduction Weighted graph $G$에 대해, $G$의 min-cut 혹은 edge connectivity 는 $G$의 connected component가 둘 이상이 되도록 하기 위해 제거해야 하는 가중치 합으로 정의됩니다. 이름 그대로 네트워크를 단절시키기 위해 필요한 최소 비용으로, 수많은 파생과 응용이 가능합니다. 이 글에서는 $n$개의 정점, $m$개의 간선을 가진 weighted graph $G$의 min-cut을 near-linear time ($\tilde{O}(m)$)에 구하는 최초의 방법인 D. R. Karger의 Minimum Cuts in Near-Linear Time을 리뷰합니다. Definition 그래프 $G$는 non-negative weighted graph로 가정합니다. 즉, weight는 음 아닌 실수 값을...
-
Weighted Min-Cut: Sequential, Cut-Query and Streaming Algorithms
Weighted Min-Cut: Sequential, Cut-Query and Streaming Algorithms 그래프의 최소 컷 (Minimum cut) 은 그래프를 연결되지 않게 하기 위해서 지워야 하는 간선의 최소 개수, 혹은 간선 가중치의 최소 합이다. 만약 간선의 최소 개수로 컷을 정의한다면, 최소 컷은 그래프의 connectivity 를 정의하는 수량이 된다. 고로 최소 컷은 그래프가 주어졌을 때 계산하고 싶은 가장 기초적인 수량에 해당되며, 응용 예시 또한 무수히 많다. 그래프의 최소 컷을 계산하는 방법은 크게 3가지가 있다. 아래에 해당 방법의 발견 시간 순으로 나열한다. (아래...
-
그래프의 간선 색칠 문제
그래프의 간선 색칠 문제 그래프 $G$가 주어질 때, 각 정점 $v$에 대해 자연수 색상 을 배정하여 간선으로 직접 연결된 정점 쌍마다 다른 색상을 배정해야 한다. 이 때, 배정된 최대 색상을 최소화해보자. 즉, 서로 다른 색의 수를 최소화해야 한다. 이 문제는 그래프의 정점 색칠 (Graph Coloring, Vertex Coloring) 문제로, NP-complete임이 잘 알려져 있다. 너무 어려우니까 다른 문제를 생각해 보자. 그래프 $G$가 주어질 때, 각 간선 $v$에 대해 자연수 색상 을 배정하여 간선으로 직접 연결된 정점 쌍마다...